3.2433 \(\int \frac{(1-2 x)^{5/2}}{(2+3 x)^5 \sqrt{3+5 x}} \, dx\)

Optimal. Leaf size=151 \[ \frac{3 \sqrt{5 x+3} (1-2 x)^{7/2}}{28 (3 x+2)^4}+\frac{247 \sqrt{5 x+3} (1-2 x)^{5/2}}{168 (3 x+2)^3}+\frac{13585 \sqrt{5 x+3} (1-2 x)^{3/2}}{672 (3 x+2)^2}+\frac{149435 \sqrt{5 x+3} \sqrt{1-2 x}}{448 (3 x+2)}-\frac{1643785 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{448 \sqrt{7}} \]

[Out]

(3*(1 - 2*x)^(7/2)*Sqrt[3 + 5*x])/(28*(2 + 3*x)^4) + (247*(1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(168*(2 + 3*x)^3) + (
13585*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(672*(2 + 3*x)^2) + (149435*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(448*(2 + 3*x))
- (1643785*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(448*Sqrt[7])

________________________________________________________________________________________

Rubi [A]  time = 0.0393694, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {96, 94, 93, 204} \[ \frac{3 \sqrt{5 x+3} (1-2 x)^{7/2}}{28 (3 x+2)^4}+\frac{247 \sqrt{5 x+3} (1-2 x)^{5/2}}{168 (3 x+2)^3}+\frac{13585 \sqrt{5 x+3} (1-2 x)^{3/2}}{672 (3 x+2)^2}+\frac{149435 \sqrt{5 x+3} \sqrt{1-2 x}}{448 (3 x+2)}-\frac{1643785 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{448 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(5/2)/((2 + 3*x)^5*Sqrt[3 + 5*x]),x]

[Out]

(3*(1 - 2*x)^(7/2)*Sqrt[3 + 5*x])/(28*(2 + 3*x)^4) + (247*(1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(168*(2 + 3*x)^3) + (
13585*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(672*(2 + 3*x)^2) + (149435*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(448*(2 + 3*x))
- (1643785*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(448*Sqrt[7])

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[(a*d*f*(m + 1)
 + b*c*f*(n + 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*
x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || Sum
SimplerQ[m, 1])

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{5/2}}{(2+3 x)^5 \sqrt{3+5 x}} \, dx &=\frac{3 (1-2 x)^{7/2} \sqrt{3+5 x}}{28 (2+3 x)^4}+\frac{247}{56} \int \frac{(1-2 x)^{5/2}}{(2+3 x)^4 \sqrt{3+5 x}} \, dx\\ &=\frac{3 (1-2 x)^{7/2} \sqrt{3+5 x}}{28 (2+3 x)^4}+\frac{247 (1-2 x)^{5/2} \sqrt{3+5 x}}{168 (2+3 x)^3}+\frac{13585}{336} \int \frac{(1-2 x)^{3/2}}{(2+3 x)^3 \sqrt{3+5 x}} \, dx\\ &=\frac{3 (1-2 x)^{7/2} \sqrt{3+5 x}}{28 (2+3 x)^4}+\frac{247 (1-2 x)^{5/2} \sqrt{3+5 x}}{168 (2+3 x)^3}+\frac{13585 (1-2 x)^{3/2} \sqrt{3+5 x}}{672 (2+3 x)^2}+\frac{149435}{448} \int \frac{\sqrt{1-2 x}}{(2+3 x)^2 \sqrt{3+5 x}} \, dx\\ &=\frac{3 (1-2 x)^{7/2} \sqrt{3+5 x}}{28 (2+3 x)^4}+\frac{247 (1-2 x)^{5/2} \sqrt{3+5 x}}{168 (2+3 x)^3}+\frac{13585 (1-2 x)^{3/2} \sqrt{3+5 x}}{672 (2+3 x)^2}+\frac{149435 \sqrt{1-2 x} \sqrt{3+5 x}}{448 (2+3 x)}+\frac{1643785}{896} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=\frac{3 (1-2 x)^{7/2} \sqrt{3+5 x}}{28 (2+3 x)^4}+\frac{247 (1-2 x)^{5/2} \sqrt{3+5 x}}{168 (2+3 x)^3}+\frac{13585 (1-2 x)^{3/2} \sqrt{3+5 x}}{672 (2+3 x)^2}+\frac{149435 \sqrt{1-2 x} \sqrt{3+5 x}}{448 (2+3 x)}+\frac{1643785}{448} \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )\\ &=\frac{3 (1-2 x)^{7/2} \sqrt{3+5 x}}{28 (2+3 x)^4}+\frac{247 (1-2 x)^{5/2} \sqrt{3+5 x}}{168 (2+3 x)^3}+\frac{13585 (1-2 x)^{3/2} \sqrt{3+5 x}}{672 (2+3 x)^2}+\frac{149435 \sqrt{1-2 x} \sqrt{3+5 x}}{448 (2+3 x)}-\frac{1643785 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )}{448 \sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.0947234, size = 104, normalized size = 0.69 \[ \frac{247 \left (\frac{7 \sqrt{1-2 x} \sqrt{5 x+3} \left (15707 x^2+21638 x+7488\right )}{(3 x+2)^3}-19965 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )\right )}{9408}+\frac{3 \sqrt{5 x+3} (1-2 x)^{7/2}}{28 (3 x+2)^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(5/2)/((2 + 3*x)^5*Sqrt[3 + 5*x]),x]

[Out]

(3*(1 - 2*x)^(7/2)*Sqrt[3 + 5*x])/(28*(2 + 3*x)^4) + (247*((7*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(7488 + 21638*x + 15
707*x^2))/(2 + 3*x)^3 - 19965*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])]))/9408

________________________________________________________________________________________

Maple [B]  time = 0.013, size = 250, normalized size = 1.7 \begin{align*}{\frac{1}{18816\, \left ( 2+3\,x \right ) ^{4}}\sqrt{1-2\,x}\sqrt{3+5\,x} \left ( 399439755\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{4}+1065172680\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{3}+1065172680\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{2}+162928290\,{x}^{3}\sqrt{-10\,{x}^{2}-x+3}+473410080\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x+333126416\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+78901680\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) +227316824\,x\sqrt{-10\,{x}^{2}-x+3}+51789024\,\sqrt{-10\,{x}^{2}-x+3} \right ){\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(5/2)/(2+3*x)^5/(3+5*x)^(1/2),x)

[Out]

1/18816*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(399439755*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^4+
1065172680*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^3+1065172680*7^(1/2)*arctan(1/14*(37*x
+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+162928290*x^3*(-10*x^2-x+3)^(1/2)+473410080*7^(1/2)*arctan(1/14*(37*x+20
)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x+333126416*x^2*(-10*x^2-x+3)^(1/2)+78901680*7^(1/2)*arctan(1/14*(37*x+20)*7^(1
/2)/(-10*x^2-x+3)^(1/2))+227316824*x*(-10*x^2-x+3)^(1/2)+51789024*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)/(2+
3*x)^4

________________________________________________________________________________________

Maxima [A]  time = 2.91958, size = 193, normalized size = 1.28 \begin{align*} \frac{1643785}{6272} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) + \frac{49 \, \sqrt{-10 \, x^{2} - x + 3}}{36 \,{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )}} + \frac{1477 \, \sqrt{-10 \, x^{2} - x + 3}}{216 \,{\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} + \frac{37091 \, \sqrt{-10 \, x^{2} - x + 3}}{864 \,{\left (9 \, x^{2} + 12 \, x + 4\right )}} + \frac{3879245 \, \sqrt{-10 \, x^{2} - x + 3}}{12096 \,{\left (3 \, x + 2\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^5/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

1643785/6272*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 49/36*sqrt(-10*x^2 - x + 3)/(81*x^4 +
 216*x^3 + 216*x^2 + 96*x + 16) + 1477/216*sqrt(-10*x^2 - x + 3)/(27*x^3 + 54*x^2 + 36*x + 8) + 37091/864*sqrt
(-10*x^2 - x + 3)/(9*x^2 + 12*x + 4) + 3879245/12096*sqrt(-10*x^2 - x + 3)/(3*x + 2)

________________________________________________________________________________________

Fricas [A]  time = 1.91738, size = 373, normalized size = 2.47 \begin{align*} -\frac{4931355 \, \sqrt{7}{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \,{\left (11637735 \, x^{3} + 23794744 \, x^{2} + 16236916 \, x + 3699216\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{18816 \,{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^5/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

-1/18816*(4931355*sqrt(7)*(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x +
3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 14*(11637735*x^3 + 23794744*x^2 + 16236916*x + 3699216)*sqrt(5*x + 3)*sq
rt(-2*x + 1))/(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)/(2+3*x)**5/(3+5*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 3.65008, size = 512, normalized size = 3.39 \begin{align*} \frac{328757}{12544} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} + \frac{6655 \,{\left (1947 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{7} + 1009736 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{5} + 213012800 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{3} + 16266432000 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}\right )}}{672 \,{\left ({\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280\right )}^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^5/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

328757/12544*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(2
2))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 6655/672*(1947*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5
) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^7 + 1009736*sqrt(10)*((sqr
t(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^5 + 213
012800*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5)
 - sqrt(22)))^3 + 16266432000*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(
sqrt(2)*sqrt(-10*x + 5) - sqrt(22))))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(
sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^4